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A class of lattice gas models are studied which are variants of the FCHC model. 
The aim is to achieve the highest possible Reynolds coefficient (inverse dimen- 
sionless viscosity) for efficient simulations of the three-dimensional incom- 
pressible Navier-Stokes equations. The models include an arbitrary number of 
rest particles and violation of semi-detailed balance. Within the framework of 
the Boltzmann approximation exact expressions are obtained for the Reynolds 
coefficients. The minimization of the viscosity is done by solving a Hitchcock- 
type optimization problem for the fine tuning of the collision rules. When the 
number of rest particles exceeds one, there is a range of densities at which the 
viscosity takes negative values. Various optimal models with up to 26 bits per 
node have been implemented on a CRAY-2 and their true transport coefficients 
have been measured with good accuracy. Fairly large discrepancies with 
Bottzmann values are observed when semi-detailed balance is violated; in par- 
ticular, no negative viscosity is obtained. Still, the best model has a Reynolds 
coefficient of 13.5, twice that of the best previously implemented model, and 
thus is about 16 times more efficient computationally. Suggestions are made for 
further improvements. It is proposed to use models with very high Reynolds 
coefficients for sub-grid-scale modeling of turbulent flows. 

KEY WORDS: Lattice gases; transport coefficients; hydrodynamics; com- 
putational fluid dynamics. 

1. I N T R O D U C T I O N  

Hydrodynamics is concerned with the large universality class of fluids 
behaving macroscopically like liquid water. That is to say, their flow at 

10bservatoire Midi-Pyr6n6es, 31400 Toulouse, France. 
2 t~cole Normale Sup6rieure, 75005 Paris, France. 
3 CNRS, Observatoire de Nice, 06003 Nice Cedex, France. 
4 Laboratoire de Physique Statistique, 75231 Paris Cedex 05, France. 

1187 

0022-4715/90/0600-1187$06.00/0 �9 1990 Plenum Pubhshing Corporation 
822/59/5-6 7 



1188 Dubrulle et  ai. 

velocities small compared to the speed of sound (low Mach numbers) is 
governed by the incompressible Navier-Stokes equations: 

~3tu + u 'Vu = -Vp  + vV2u (1) 

V . u = O  (2) 

Within this universality class a similarity principle applies: flows in the 
presence of boundaries of similar shapes have identical (dimensionless) 
properties, provided they have identical Reynolds numbers: 

R= LV/v (3) 

Here, v is the kinematic viscosity of the fluid, a function only of its 
microscopic structure and of the thermodynamic variables (density, tem- 
perature, etc.) and L and V are characteristic scales and velocities of the 
flows. 

The universality class of hydrodynamics contains, in addition to 
"natural" substances such as air, water~ and liquid metals, various artificial 
lattice gas models. ~ The latter are discrete Boolean models governed by 
deterministic or nondeterministic cellular automata rules, generalizations of 
the HPP model. (2) Lattice gas models have conservation rules (of mass, 
momentum, and energy) built into their collision laws. They do not possess 
the continuous symmetries, e.g., rotational invariance, of the Navier-Stokes 
equations. Instead, they have only a discrete crystallographic invariance 
group. If this group is large enough, in particular to ensure the isotropy of 
fourth-order invariant tensors, then the "macrodynamical" equations of 
such tattice gases differ from the Navier-Stokes equations by additional 
terms which become irrelevant in the limit of low Knudsen numbers (scales 
large compared to mean free path) and low Mach numbers3 3'4~ The macro- 
dynamical equations involve also a "Galilean factor" g(d) in front of the 
nonlinear term u. Vu. It is a function of the (reduced) density d of particles 
per node and per velocity. Its presence reflects the lack of Galilean 
invariance at the microscopic level. In the low-Mach-number limit, density 
fluctuations become irrelevant everywhere (except in the pressure term); 
this factor becomes constant and may be rescaled out, so that exact 
Navier-Stokes dynamics is asymptotically recovered, as now confirmed by 
numerous simulations (see, e.g., ref. 5). 

The construction of three-dimensional lattice gas models had originally 
to circumvent the absence of suitable crystallographic groups in three 
dimensions. This was done by a temporary detour through the fourth 
dimension, leading to the FCHC lattice3 6) Three-dimensional models will 
be central to the present paper. 
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A measure of the efficiency of a lattice gas model (prescription of a lat- 
tice and of a set of collision rules) for simulating the Navier-Stokes equa- 
tions is the Reynolds coefficient R .  ax. It was originally defined in refs. 3 and 
7 for the case without rest particles; a more general definition is given in 
Section5.4. Roughly, the Reynolds coefficient measures the inverse 
viscosity in lattice units. For the simulation of a three-dimensional flow 
with prescribed geometry at prescribed Reynolds and Mach numbers, the 
computational efficiency is proportional to the fourth power of the 
Reynolds coefficient. In two dimensions it is the third power. 

Achieving the highest possible Reynolds coefficients is important in at 
least two respects: (i) it allows the numerical simulation of higher Reynolds 
numbers; (ii) it increases the speed of the computation and/or decreases its 
cost. Such questions may be of particular relevance in designing optimal 
three-dimensional special-purpose machines operating by lattice gas algo- 
rithms. 

It is our purpose here to show how it is possible to systematically 
improve existing models to achieve higher efficiency. Before outlining the 
paper, we present an overview of the FCHC models developed so far and 
the key technical motivations of the present study. 

1.1. History of FCHC Models 

In the quest for increasingly efficient lattice gas models, our group has 
by now considered a number of variations of the FCHC model. In order 
to facilitate reference, we will assign short names to the main models. 
Table I defines the names and summarizes the properties of the models. 
The semi-detailed balance column refers to a property of the collision 
matrix which is a weak form of reversibility (see ref. 3 and Section 2 below). 
References in boldface contain results of numerical simulations. The values 

Table I. Main Characteristics of Previously Introduced FCHC Models 

Optimi- Semi- R max 
Collision zation Rest detailed Boltz- 

Name rules of v particles balance mann  Reference 

FCHC-1 Algorithm No 0 Yes 2.00 8, 9 
FCHC-2  Table Approximate 0 Yes 6.44 10 
FCHC-3 Table Approximate 0 Yes 7.13 7, 10, 11 
FCHC-4 Table Exact 0 Yes 7.57 10 
FCHC-5 Table Exact 3 Yes 10.71 10 
FCHC-6 Table Exact 0 No 17.2 12 
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of the Reynolds coefficient are computed under the Boltzmann approxima- 
tion. Previous experience has shown that this approximation is remarkably 
good as long as semi-detailed balance is satisfied. As we shall see, it 
deteriorates markedly when semi-detailed balance is violated. 

FCHC-1 is the isometric model. Collisions are defined by a global rule: 
the output state is computed from the input state according to a general 
algorithm. This model was used for the initial validation of  the FCHC 
method. In all subsequent models, collisions are defined instead by an 
explicit table, giving the output state for every possible input state. One 
tries then to minimize the kinematic viscosity v, in order to maximize the 
Reynolds coefficient. This was done by a heuristic, approximate method in 
models FCHC-2 and FCHC-3. These two models differ only by a minor 
change in the heuristics. Results of simulations were published only for 
FCHC-3, which has a slightly better Reynolds coefficient. 

As the optimization algorithm was perfected, it became possible to 
compute the exact optimum in model FCHC-4 (and in all subsequent 
models). The latter represents the best which can be achieved within the 
bounds of the original definition of the FCHC lattice, (6) i.e., with a maxi- 
mum of 24 moving particles, and assuming semi-detailed balance. 

One way to increase the Reynolds coefficient, as shown by d'Humi6res 
and Lallemand, (5) is to add rest particles: more collisions are allowed, 
thereby giving more room for optimization. However, in three dimensions, 
the size of the collision table grows rapidly with the number of rest par- 
ticles. For existing machines, the practical limit for that number is three 
(see Section 7). This was realized in model FCHC-5. 

Semi-detailed balance implies universal properties, i.e., independence 
on the collision rules, for equilibrium distribution, and thus for the 
Galilean factor g(d). This condition, together with the Boltzmann 
approximation, implies positivity of the viscosity/TM This suggests that one 
should be able to obtain a lower, perhaps even negative, viscosity by 
dropping that condition. For the 24-velocity model (no rest particles), an 
optimal collision table is then easily derived: for each input state, one 
simply chooses the "best" output state. This gives model FCHC-6. The 
procedure indeed reduces the (Boltzmann-based) viscosity; it remains, 
however, positive. 

The next idea is to combine the approaches of models FCHC-5 and 
FCHC-6, i.e., to incorporate simultaneously rest particles and violation of 
semi-detailed balance. An example is model FCHC-7, to be described in 
the present paper. 

Finally, following an idea due to Somers and Rem, (14~ one can note 
that the Galilean factor g(d), which appears multiplicatively in the 
Reynolds coefficient, becomes a function of the collision rules when semi- 
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detailed balance is violated. (12~ Therefore one can also try to maximize that 
factor. This leads to model FCHC-8, which also will be described in the 
present paper. 

1.2. O u t l i n e  

Definitions of the lattice gas models used are given in Section 2. The 
Boltzmann approximation is introduced in Section 3. This approximation 
is at present the only analytical tool allowing us to estimate theoretically 
the Galilean factor g(d) and the kinematic viscosity v, which are both func- 
tions of the collision rules, when the assumption of semi-detailed balance 
is violated. In Section 4 the Boltzmann approximation is used to construct 
explicit low-velocity equilibrium solutions. The Gatilean factor, the 
viscosity, the speed of sound, and the Reynolds coefficient are obtained in 
Section 5 on transport coefficients. Optimization of the collision rules with 
respect to the (Boltzmann-based) transport coefficients is discussed in 
Section 6. We show that most of the questions asked can be reduced to a 
standard optimization problem, known as the Hitchcock or transportation 
problem. Results of this optimization problem are presented in Section 6.3; 
this is where we see negative viscosities appearing for the first time for 
FCHC models. 

In Section 7 we explain in some detail how the models can be 
implemented in three-dimensional simulations; in particular, we show how 
to construct the collision (lookup) table. In Section 8 careful measurements 
of true (not Boltzmann-based) transport coefficients are presented for the 
new FCHC-7 and FCHC-8 models and for the previously introduced 
FCHC-3 model. Simulations of realistic flows (with boundaries, etc) are 
not within the scope of this paper (see, e.g., refs. 7-11). 

Section 9.1 is a summary of the main results. In Section 9.2 we discuss 
the origin of the significant discrepancies observed between true and 
Boltzmann values when semi-detailed balance is violated and we suggest 
remedies. In the last Section 9.3, an interesting issue raised by Orszag and 
Yakhot (15) is revisited for models possessing high Reynolds coefficients. 

Material presented in this paper is not always in the order in which 
the questions were investigated chronologically. For example, the 
simultaneous optimization of viscosity and Galilean factor (Section 6.4) 
was suggested to us by J. A. Somers and P.C. Rein after implementation 
of self-dual models had produced results which were somewhat disappoint- 
ing (by reference to Boltzmann-based expectations). 

Two-dimensional lattice gas models are not discussed in this paper, 
but we note that all the FCHC models may be used projected down from 
four to two rather than three dimensions. Unpublished results of one of us 
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(J.P.R.) have shown that this provides an efficient simulation tool on 
machines possessing a very large memory. However, alternative, possibly 
simpler two-dimensional algorithms with high Reynolds coefficients, based 
on non-strictly-local collision rules, have been proposed and appear 
promising. (16.17) 

2. DEF IN IT IONS 

We shall use in this paper variants of the early 24-bit FCHC 
models (3'6'7) with rest particles and modified collision rules. As usual, D 
denotes the dimension of space (D = 4  for the FCHC lattice, its three- 
dimensional implementation included; see Section 7.3); the position of a 
node is defined by a set of signed integers x = (Xl,..., xD). For the FCHC 
lattice, their sum is even. As usual, Greek letters e, /3 .... denote Cartesian 
coordinate indices, while Roman letters are used to distinguish different 
sorts of particles (by their velocities). Small Roman indices such as i refer 
to moving particles; capital Roman indices such as I refer to moving or rest 
particles, the latter being ascribed the index zero. Implicit summation on 
repeated Greek indices is assumed. 

The nonzero velocities are ci, i =  1 to b, with components cir. All the 
FCHC models have b = 24. Rest particles have velocity c o = 0. For each 
velocity c~r 0 at most one particle is allowed (exclusion principle). The 
maximum allowed number of rest particles n o may be greater than one. All 
particles have the same mass. A composite index such as Ik refers to situa- 
tions with k particles of velocity index I at a node; for example, P1k is the 
probability to have k particles of velocity index/.  For I > 0, when the index 
k = 1 (its maximum value), it will often be omitted; for example, P~ denotes 
the probability of having one particle of velocity ci. Note that this quantity 
was denoted Ni in previous publications. 

A state characterizing a given node is a collection of integers s = (s/) 
satisfying 

O<~so<~no, s i = 0 o r  1, i=l,...,b (4) 

sz is the number of particles with velocity ct. The dual of a state s = (sz) is 
the state s-= (gz) with g~ = 1 -  si and go = no-So.  Note that for moving 
particles, this means interchanging particles and holes (i.e., absence of 
particle). 

Input states (before collision) are denoted 

s= (So ,  Sl ..... s0) (5) 

Output states (after collision) are denoted 

s ' =  (s;, s] ..... st) (6) 
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Note that the number of distinct states per node is (no + 1) 2 b. The number 
of moving particles in a state s at a node is 

b 

P+ = Z si (7) 
i ~ l  

and the total number of particles is 

b 

P= Z s~=so+p+ (8) 
I = 0  

We now turn to the dynamical aspects of the lattice gas models. We 
take as unit of time the time required by one propagation step. The unit 
of length was implicitly defined by the specification of the FCHC lattice at 
the beginning of the present section (nodes have integer coordinates). The 
link length is x/~ (distance from a node to its nearest neighbors). The 
speed of the moving particles is therefore c = x/~. We take as unit of mass 
the mass of a particle. 

The rules of the lattice gas automaton are defined in the usual wayJ 3) 
Particles with nonzero speed propagate to nearest neighbor and rest 
particles stay put. Collisions are controlled by transition probabilities 

A(s --+ s') (9) 

from input states s to output states s'. The set A(s ~ s') is called the colli- 
sion matrix. Normalization of probability is assumed: 

~. A(s --* s') = 1, Vs (10) 
s' 

Semi-detailed balance, (3) which is defined like (10), but with summation 
over s, is not assumed. Lack of semi-detailed balance for deterministic 
models (i.e., such that there is a single output state to which a given input 
state has a nonvanishing transition probability) means that different input 
states can map to the same output state. 

As usual, it is assumed that mass and momentum are conserved in 
individual collisions: 

A(s - ,  ~') F~ (~)-  ~,) = o 

(11) 
A(s--,s') y. (s~-s~) ez=0,  Vs, s' 

I 

A model is said to be self-dual if 

A(~, 7')=A(s,  s'), Vs, s' (12) 
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where s- and g' are the duals of s and s'. Additional constraints on the colli- 
sion matrix will result from the assumption of a prescribed basic equi- 
librium (Section4.1). Finally, full invariance under the crystallographic 
group (G-invariance) (3'z3) for the collision laws is assumed when working 
out the theory. 

3. THE B O L T Z M A N N  A P P R O X I M A T I O N  

As usual, the Boltzmann approximation consists in neglecting correla- 
tions between particles entering collisions. The physical idea underlying 
the Boltzmann approximation is that the propagation step following 
immediately the collision step suppresses most of the correlations which 
may have been generated in collisions. Use of the Boltzmann approxima- 
tion may introduce errors in the description of both steady-state solutions 
with uniform hydrodynamic velocity (usually called "equilibria") and 
steady-state solutions with uniform shear. In the previously explored 
framework, with the condition of semi-detailed balance satisfied (models 
FCHC-1 to FCHC-5), the Boltzmann approximation was exact for equi- 
libria (because their probability distribution is then completely factorized) 
and gave reasonably accurate predictions for the viscosity. With violations 
of semi-detailed balance the approximation may (and will actually) 
deteriorate. Our hope is that the Boltzmann approximation is still a useful 
guide in the fine tuning of the collision rules when trying to achieve the 
highest possible Reynolds coefficients. 

Within the Boltzmann approximation, the statistics of the lattice are 
completely described by the set of probabilities 

P~k(t, X) = Pr{Sl(t, x) = k} (13) 

where s(t, x) is the input state at discrete time t and discrete node x. 
Normalization implies 

Plk = 1, VI (14) 
k 

Note that for moving particles, the correspondence with the earlier 
notation Ni is 

Pit==--Pi=Ni, P i o = l - N i  (15) 

The relevant hydrodynamic quantities can be defined in terms of these 
probabilities: 

The mean density 

p = ~ kP~k (16) 
Lk 
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The mean density of the moving particles 

P+ = ~  Pi 
t 

The mean mass flux 

The mean velocity 

(17) 

J = E P;ci  (18)  
i 

J u = -  (19)  
P 

The mean velocity of the moving particles 

J 
u +  = - -  (20)  

P+ 

Note that p is the density per node, not per unit volume; in order to 
obtain the density in the usual sense, one should multiply it by a factor 
equal to the number of nodes per unit D-dimensional volume (1/2 for 
FCHC). The same remark applies to p+ and to j. 

The (lattice) Boltzmann equation takes the form 

P ~ k ( t + l , x + e , ) = ~ g ~ ( s ' z , k ) A ( s ~ s ' ) l - I P j ,  j(t ,x ) (21) 
s s '  J 

In the rhs, the Kronecker delta 6(s~, k) selects the output states having 
exactly k particles of velocity ez. In the lhs, the space-time shifts correspond 
to propagation. Because of (14) the above set of equations is redundant 
and we may restrict consideration to the set of no + b equations having 
k>0.  Using (10), we may rewrite the Boltzmann equation as 

PIk(t + 1, x + eI) -- Plk(t, X) = Ate(t, x) (22) 

where 

dik=~. ~ [6(s;, k) -6(S l ,  k)] A(s--*s') 1-[ Pj,j=O (23) 
s s '  J 

is called the collision term. 

4. EQUIL IBRIUM SOLUTIONS 

4.1. Basic Equil ibrium (Zero Ve loc i ty )  

Equilibrium solutions, independent of space and time, are obtained by 
setting the collision term to zero. An important role in the subsequent 
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analysis is played by basic equilibrium solutions. These are solutions with 
vanishing mean velocity which are consistent with the G-invariance. It 
follows that the probability of one (respectively, zero) particle with non- 
vanishing velocity Pil (respectively, Pi0) is independent of i, and will be 
denoted by dil = d (respectively, d~0 = 1 - d). For rest particles, Pok will be 
denoted dog. Normalization implies 

no 

dok = 1 (24) 
k = O  

A basic equilibrium is therefore defined by no + 1 independent quantities 
{d, (dok, k =  1 ..... no)}. The Boltzmann equation for the basic equilibrium 
takes the form 

d, =Z 2 a(s),k)P(s)A(s--,s'), vI, k (25) 
s s '  

Here, P(s), the probability of an input state in basic equilibrium, is given 
by 

P(s)  = [-I dj~j = dosodP+(1 - d) b-  p~ (26) 
d 

Equations (25) are redundant. For I >  0 and k =  1 (moving particles) they 
are all identical. Multiplying (25) by k and summing over I and k, we 
obtain an identically verified equation, expressing the conservation of mass. 
Therefore we can omit the equation for I >  0. We are left with the condi- 
tions 

~ 6(S'o, k)  P(s)  A(s  ~ s') = d0k, Vk > 0 (27) 
s s '  

One possible approach, which was followed in ref. 12, is to assume 
nothing about the collision matrix apart from the conservation conditions 
(11). A practical problem with this approach is that the basic equilibrium 
is not known; it is given by the system of nonlinear equations (27), which 
cannot be solved explicitly, and which may have more than one solution. 
Therefore a different approach will be used here. We shall consider the 
probabilities d and do~, characterizing basic equilibria as given. Equa- 
tions (27) represent then additional constraints which must be satisfied by 
the collision matrix A. 

We stress that the equilibrium solutions derived here are obtained 
in a formal way, within the Boltzmann approximation and without 
reference at this point to their stability. We shall see in Section 6 that 
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negative viscosity instabilities are present in some of the models (still in 
the Boltzmann framework). Implementations demonstrating the actual 
existence of basic equilibria will be postponed to Section 8. 

4.2. Equi l ibr ia  w i t h  U n i f o r m  M e a n  F l o w  

As shown in ref. 12, in the absence of semi-detailed balance, equi- 
librium solutions lose the universality property with respect to the collision 
matrix. (3) Use of the Boltzmann approximation allows, however, explicit 
calculation of the equilibrium solutions for small hydrodynamic velocities, 
by perturbation around the basic equilibrium solution. (12) We are thus led 
to seek solutions of Eq. (22) in the form 

P~(p ,u )=d+zc i~u~+#Qi~u~u~+t l c~u~u~+O(u  3) (28) 

Pok(P, u) = dok + tlok6~u~ut~ + O(u 3) (29) 

where d and the dok characterize a basic equilibrium and the tensor 
Qi~ = % c i ~ -  (c2/D)6~ is traceless. The relatively simple form of the coef- 
ficients is dictated by the G-invariance: invariant vectors t~ must be 
proportional to c~ and invariant tensors ti~ must be a linear combination 
of Qi~ and 6~ (see ref. 3). 

The coefficient Z in (28) is obtained by identifying the mean velocity. 
This gives 

pD 
Z - bc 2 (30) 

For the no + 2 remaining coefficients #, q, and ~/0k it is necessary to sub- 
stitute (28) and (29) into the Boltzmann equation (22) and to require that 
the collision term A~k given by (23) should vanish up to second order in the 
mean velocity. G-invariance implies that the collision term has an expan- 
sion similar to (28)-(29) without terms of order zero and one. This follows 
from the observation that the collision term has to be orthogonal to con- 
stants and to the cz's (by mass and momentum conservation). Such proper- 
ties can be used to simplify the evaluation of the coefficients #, ~/, and r/ok. 
The details, quite similar to those already presented in ref. 12, will be omit- 
ted. Explicit expressions for the coefficients r/ and ~/ok require the solution 
of a system of linear equations with no unknowns which seemingly cannot 
be further simplified by the use of symmetries. In the sequel, we shall only 
need the coefficient #, which has an explicit expression 

# = 1-1 d d (b-~) 2D22c-- 7 (\ 1 - 2 d - ~ )  (31) 
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Here, 

where 

and 

Nd(1-d)~b=~ ~ P(s)A(s-~s')q~qa(Y'~a- Y~a) (32) 
s s '  

Nd(1-d)  t~= ~ ~ P(s) A(s ~ s') Y~ (Y '~ -  V~r (33) 
s s '  

bc4(D - 1 ) 
N - (34) 

D 

(35) 

q~ = ~ s~e~ (36) 
i 

Y~r siQi~, Y '~=~ s;Qi~ B (37) 
i i 

are respectively the first- and second-order velocity moments of a state s 
(see refs. 12 and 13). 

We note that the expression for # obtained above is similar to the one 
obtained in the case without rest particles. (12) The only change is that the 
probability P(s) of a state in basic equilibrium is now 1-Is djs~ instead of 
dP(1 - d)b-p. 

Finally, we observe that # vanishes when d =  1/2 for self-dual models. 
Indeed, under the duality transformations ( i ~  1 - s i ) ,  the velocity u is 
reversed, the probabilities Pi are changed into 1 -  Pi, and the density d 
into 1 - d. Hence, in the expansion (28), the coefficients of terms quadratic 
in u must vanish. Alternatively, the vanishing of/~ can be checked from its 
expression (31): under duality the first- and second-order moments q~ and 
Y=~ change sign; this implies the vanishing of ~b, given by (32), for self-dual 
models and self-dual densities (i.e., d =  1/2). 

5. T R A N S P O R T  C O E F F I C I E N T S  

5.1. The  Gal i lean Factor  g ( d )  

It was shown in ref. 3 that lattice gas models lead to the incom- 
pressible Navier-Stokes equations in suitable large-scale and low-velocity 
limits. This was done in detail for models with no rest particles and satisfy- 
ing the condition of semi-detailed balance. The generalization to models 
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with rest particles and without semi-detailed balance involves only minor 
technical modifications. As usual, the Navier-Stokes equations are 
obtained with a nonlinear term modified by a Galilean factor g(d) which 
is constant in the incompressible (low-Mach-number) limit and which can 
be removed by rescaling the time variable. 

Proceeding exactly as in ref. 3, we can relate g(d) to the coefficient 
of quadratic terms in the equilibrium distribution (28): 

2bc 4 
g(d) - t~ (38) 

pD(D + 2) 

Using (31) and p+ =bd, we obtain 

D + 2 1 -  d 1 - 2 d -  (39) 

~b and O being given by (32) and (33). Note that, in the case when semi- 
detailed balance holds, ~b is zero and we recover the result of d'Humi~res 
and Lallemand. (5) Without semi-detailed balance, the Galilean factor loses 
its universality and becomes dependent on the details of the collision 
matrix. Note, finally, that when self-duality holds, and irrespective of the 
assumption of semi-detailed balance, g(d) vanishes for d=  1/2, a conse- 
quence of the vanishing of/~ (see end of Section 4.2). 

5.2. The Speed of Sound 

The computations of Section7.1 in ref. 3 can be extended in a 
straightforward manner to the present case and give the following expres- 
sion for the speed of sound: 

1 k2d~ (-- kd~ - d)  J 1/,2 (40)  

Although the collision matrix does not appear in this expression, the 
derivation assumes that the rest particles and the moving particles are 
coupled by the collisions, so that local equilibrium is maintained between 
them. (It would be invalid in the special case where the number of rest 
particles is preserved in collisions.) Incidentally, it can be shown that the 
quantity inside brackets is always larger than 1: the presence of rest 
particles slows down sound propagation. 

We will also need the ratio p/p+. From (16) and (17) we find for the 
basic equilibrium 

P--- = 1 + Zk  kdok (41) 
p+ bd 
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5.3. The Kinematic Viscosity 

The kinematic viscosity can be obtained by considering steady-state 
solutions of the Boltzmann equations (22) having uniform shear. This is a 
straightforward extension of the analysis performed in ref. 13. We list only 
the main points, omitting details. Composite equation numbers such as 
(2.27) will refer to ref. 13 in the present section. The notation v,. (and its 
generalization Vlk) is also taken from ref. 13; it denotes changes in the basic 
equilibrium probabilities resulting from the application of a weak shear. 
This notation must be distinguished from the kinematic viscosity v. 

We note first that semi-detailed balance is not actually required for the 
derivation of the viscosity in ref. 13. The first term in (2.27) vanishes in any 
case, since vj = 0 corresponds to the basic equilibrium. Thus, even without 
semi-detailed balance, (3.38) and (4.5) hold, and it is only necessary to 
extend the treatment so as to include rest particles. 

We assume that the mean velocity is a uniform weak shear flow: 

u~ = ~ T=ex B (42) 

and we compute first-order expansions of the Plk: 

with 

Pik(x) = d~k + v~k(x) (43) 

vlk(x ) ~ 1 (44) 

Symmetry considerations can be used to show that the probabilities for the 
rest particles are unperturbed to that order: 

Vok = 0, Vk (45) 

The computation is then essentially the same as in ref. 13, with the quantity 
alP(1- d) n-p replaced by P(s). The kinetic viscosity is given by 

D + 2  

where the quantity )~ (which can be interpreted as a mean free path) is now 
given by 

1 1 
1 E 

s s '  

1 
x d(1 - d) ~ sj(O COS 2 0 0 - -  1) (47) 

J 
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(Note that the rightmost term 1 cannot be delected, as in ref. 13, in the 
present case.) 00. is the angle between velocities, and i has an arbitrary 
value. A rearrangement similar to (4.1)-(4.9) gives 

1 D 1 
(D-1 )bc  4 ~ ~ P(s)A(s~s')d(1 -d-----~) Y~(Y=r Y'=a) (48) 

s s '  

Comparing with (33), we find that 

1 
- = - t /J  ( 4 9 )  
)v 

5.4. The Reynolds Coefficient R,  

We are now in a position to evaluate the "Reynolds coefficient" which 
characterizes the ability of a given model to achieve high Reynolds num- 
bers. (3'7) When the scale lo and the characteristic velocity u0 of a flow are 
expressed in standard lattice units (Section 2), the Reynolds number R is 
given by (3) 

R = louo g(d) (50) 
v 

where g(d) and v are the Galilean factor and the kinematic viscosity. 
For models without rest particles, the Reynolds coefficient was defined 

as R ,  = csg(d)/v. It incorporates the speed of sound cs because the small- 
ness of the Mach number M = Uo/C, is needed for the validity of the incom- 
pressible approximation. The Reynolds number is then given by (3) 

R = MloR, (51) 

For models with rest particles, given the way we have defined the 
hydrodynamic velocity u, namely mass flux j divided by total density p 
(moving and rest particles), we are led to propose a modification of the 
definition of the Mach number and of the Reynolds coefficient. 

We redefine the Mach number as 

M =  u0+ (52) 
r 

where u0+ is the typical value for the velocity u+, based only on moving 
particles (20). It is easily checked that the modified Mach number is a 
better measure of the validity of the incompressible approximation. With the 



1202 Dubrulle et  al. 

previous definition, arbitrary increase in the number of rest particles would 
lead to arbitrary decrease of the Mach number, without actually improving 
incompressibility. The appropriate new definition of the Reynolds coef- 
ficient consistent with Eq. (51) is 

R,  uo Csg P+ Gg (53) 
Uo+ v p v 

Note that the p+/p factor cancels the inverse factor in (39). 

6. O P T I M I Z A T I O N  OF THE COLLISION RULES 

6.1. M in imiza t ion  of the Viscosity 

In order to maximize R ,  given by (53), we try to minimize the 
kinematic viscosity v. In view of (46) and (49), this is equivalent to mini- 
mizing r given by (33). The adjustable parameters are: the number of rest 
particles no; the values d and dok which characterize the basic equilibrium; 
the collision probabilities A(s~s ' ) ,  subject to the conditions (10), (11), 
and (27). Our strategy will be to consider n 0, d, and the dok as given and 
to compute the optimal values of the A(s ~ s'). 

The constant factors in (33) can be ignored. We can also ignore the 
term Y~ Y~, which gives on summation over s and s' a value independent 
of the collision probabilities A(s ~ s'). Our problem is thus to choose the 
A(s ~ s') so as to minimize the quantity 

~ P(s) A(s ~ s') Y~e Y'~ (54) 
s s '  

subject to the constraints (10), (11), and (27). The self-duality constraint 
(12) will also be assumed except in Section 6.4. 

We define a family f (p,  q) as the set of all states which have a given 
number of particles p and a given momentum q. (This was called a packet 
in ref. 10.) The relations (11) mean that A(s--* s ' )=  0 when s and s' belong 
to different families. Therefore we only have to consider the values of 
A(s ~ s') for s and s' belonging to the same family. 

For a given input state s and a given number k, consider the subset 
5~(s, k) of all output states s' such that (i) s' is in the same family as s and 
(ii) the number of output rest particles is s ; - -k .  Define 

A(s, k) = ~ A(s --* s') (55) 
s '  E 5/ ' (s ,  k )  
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Note that A(s, k) is, for a given input state s, the probability of obtaining 
k output rest particles. The constraints (10) and (27) can be written 

A(s, k)=  1, Vs (56) 
k 

P(s) A(s, k) = dok, Vk (57) 
s 

They involve only the quantities A(s, k). Therefore the values of the quan- 
tities A(s ~s ' )  can be freely redistributed inside a set 5~: the conditions 
remain satisfied. Clearly, then, the optimal solution will use only the colli- 
sion (or collisions) for which the quantity Y~aY'~a is minimal. We call 
~/(s, k) this minimal value of Y~a Y'~ on the set 5e(s, k). [A preliminary 
task will consist in finding Yg(s, k) and the associated output states for all 
s and k.] The quantity to be minimized is then 

P(s) A(s, k) k) (58) 
s k 

This optimization problem is not in a standard form because of the 
presence of the factor P(s) in (57). This can be remedied by introducing the 
joint probability of having an input state s and k output rest particles: 

B(s, k) -= P(s) A(s, k) (59) 

The constraints (56) and (57) become 

B(s, k) = P(s), Vs (60) 
k 

~, B(s, k) = dok, Vk (61) 
s 

and the quantity to be minimized is 

Z ~ B(s, k) ~(s, k) (62) 
s k 

This has the form of a classical Hitchcock problem, or transportation 
problem: find a matrix B for which the sums of the elements along rows 
and columns have prescribed values, and such that a given linear combina- 
tion of the elements is minimal. This problem could in principle be solved 
by known techniques. However, it differs in a number of respects from the 
problems encountered in the case of semi-detailed balance(l~ 

1. The problem cannot be separated into independent problems for 
the families, because the sum (61) runs across families. 

822/59/5-6-8  
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2. The right-hand sides of (60) are density-dependent [-through 
P(s)], so that the optimization problem must be solved separately 
for each value of the density d. 

3. The weights of the rows and columns, given by the right-hand 
sides of (60) and (61), are not integers. One must then contend 
with round-off errors. 

All this makes the problem harder to solve. In addition, the solution of the 
problem as stated so far consists generally of noninteger values for the 
quantities A(s-~s'); in other words, the collision algorithm is nondeter- 
ministic. This would mean a larger collision lookup table (several output 
states must be stored, together with their probabilities) and a longer com- 
putation time of the collisions (the output state must be chosen according 
to a table of probabilities). 

6.2. The Method of f-Equilibria 

The difficulties above can be avoided at the cost of introducing addi- 
tional constraints. First, we shall demand that, in the basic equilibrium, the 
probability of having k rest particles is preserved not only globally, but 
also separately inside each family. Specifically, representing a family by f, 
we replace (27) by 

~ 6(S'o,k) P ( s )A( s~s ' )=~  6(so, k) P(s), Vf, k (63) 
s ~ f  s ' ~ f  s e f  

This will be called an f-equilibrium. Note that by summing over f we 
recover (27). Thus, (63) represents indeed a set of more detailed con- 
straints. These constraints are comparatively mild, however: we still have 
much more freedom than in the case of semi-detailed balance. 

We can then consider separately a given family f Equation (10), 
specialized to f, becomes 

A(s ~ s ' )= l, Vs~ f (64) 
s ' ~ f  

and the quantity (54) to be minimized can be decomposed into a sum in 
which individual terms involve only one family and have the form 

~ P(s) A(s --* s') Y~ Y'p (65) 
s s f  s ' e f  

This takes care of the first difficulty. Next, we shall imagine that there 
exists some hidden additional information which leads to a subdivision of 
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each state s into a number of microstates a. ~~ This number will be called 
the multiplicity of the state s and is represented by ~ ( s ) .  All microstates 
corresponding to a given state s are equally probable; therefore the 
probability of an input microstate a is 

P(a) = P(s)/~l(s) (66) 

The collision rules are now defined by a matrix of elements d(~r ~ ~r'), 
giving the probability that an output microstate cr' will be produced for an 
input microstate a. Equations (63)-(65) are still applicable, with s, s', and 
A replaced by a, ~r', and d :  the constraints become 

d ( a  ~ a') = l, Va e f  
o" ~.f" 

~ 6(s~), k) P(~) d ( ~  -+ d )  = ~ 3(So, k) P(a), 
a ~ f d ~ f  a ~ f  

and the quantity to be minimized becomes 

Vk 

(67) 

(68) 

~ P(a) .~r ---, d )  Y~  Y',~ (69) 
o-~f  ~ ' ~ f  

In (68) it is understood that So and s~ are the numbers of rest particles in 
the microstates a and ~r'. 

Now we assume that the multiplicities are chosen in such a way that 
all microstates of a family have the same probability. From (26) and (66), 
we find that this will be the case if the multiplicities have the form 

//{(s) oc dosodP+ (1 - d) b-p+ (70) 

Multiplying and dividing by dS~ - d )  n~ so, and noting that the total num- 
ber p of particles given by (8) is constant in a family, we can write this in 
the form 

dos0 
~ ' (s)  oc (71) dS0(1 _d)-0 s0 

We see that the multiplicity of a state s is a function of its number So of rest 
particles only. Accordingly, we write it from now on in the form JCs0. The 
multiplicities must be integers; nevertheless, given a set of dok, Eq. (71) can 
in principle be satisfied with an arbitrarily small error by taking the multi- 
plicities large enough. Conversely, given a set of multiplicities, the dos~ can 
be computed from (71). [The proportionality constant is obtained from the 
normalization (24).] The multiplicities dr k can thus be viewed simply as 
another way of defining the quantities do~. 
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Now P(a) is a constant inside a familyf. Therefore it can be taken out 
of the summations and then eliminated in (68) and (69). We proceed as 
before: for a given input microstate a and a given number k, we consider 
the subset 5~ k) of all output microstates a' obtainable from a and 
having k rest particles. We define 

.~(a, k) = ~ ~(~-~ a') (72) 
a' c S,~ 

The constraints (67) and (68) can be written 

d(a,  k)= 1, Va 6 f  (73) 
k 

d ( a ,  k )=  ~, 6(So, k), Vk (74) 
a c f  a ~ f  

They involve only the quantities d(o-, k). Again, the optimal solution will 
use only the collision (or collisions) for which the quantity Y~ Y'~B is mini- 
mal. The minimum is the same quantity ~/(s, k) as before, since Y~ and 
Y'~ are functions only of the state s. The quantity to be minimized is then 

~ d ( a ,  k) ~(s, k) (75) 
a e f  k 

Equations (73)-(75) represent again a Hitchcock problem. But now 
the parameter d has been completely eliminated. Thus, the optimization 
problem has to be solved only once, and the results can then be used for 
all values of d. We note also that the right-hand sides of the constraints 
(73) and (74) are now integers. As a result, the optimization problem can 
be solved exactly, with existing algorithms. Another interesting conse- 
quence is that a general theorem (18) states that in such a case, there exists 
an optimal solution in which all d ( a ,  k) are integers. Since the row sum 
must be 1 by (73), in every row one coefficient equals 1 and all the others 
vanish. In other words: a deterministic algorithm can be built, represen- 
table by a lookup table operating on the microstates. 

In the particular case where the multiplicities are symmetrical, i.e., 

~'.o k = ~/k, Vk (76) 

the optimization problem defined by (73)-(75) is invariant under duality. 
In that case, it is therefore sufficient to solve the problem for one-half of the 
families only, namely those for which the number of particles is 
p <~ (n o + b)/2, and to use duality to obtain the other half of the collision 
lookup table. This produces a self-dual model (Section 2). Note that the 
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condition (76) can be translated with the help of (71) into an equivalent 
condition for the dok: 

do, o (77/ 
dok \ 1 - d] 

A more special case is the indistinguishable case(i~ 

JC/k = 1, ~/k (78) 

Microstates and states then become identical. This is the case which will be 
used in the implementations (see Section 7). 

As in the case of semi-detailed balance, (1~ the computation of the 
optimal solution can be considerably accelerated by taking as elementary 
objects the species instead of the states; a species is a subset of a family 
consisting of all states which can be changed into each other by isometries 
preserving the FCHC lattice. 

6.3. Results 

Figure 1 shows a closeup of the kinematic viscosity v obtained by the 
above method in the vicinity of d =  0.5 (where it has a minimum), in the 
indistinguishable case. The solid lines correspond, respectively, from top to 
bottom, to no=0 ,  1, 2, 3, 7, 15, 31 rest particles. Table II lists the minimal 
values of v. 

It can be seen that the Boltzmann viscosity is negative over an interval 
of d values when no is 2 or more. The figure also suggests that the mini- 
mum negative viscosity may have a finite limit for no ~ oo. Since the 
viscosity depends continuously on d, there exists for each no ~> 2 a critical 
density 0 < d C < 1/2 at which the viscosity vanishes. 

For  comparison, the dashed lines represent the Boltzmann viscosity in 
the case of semi-detailed balance, (~~ again in the indistinguishable case, for 
0, 1, 2, and 3 rest particles. The case no = 3 is model FCHC-5. We recall 
that when semi-detailed balance is satisfied, the viscosity must remain 
positive (13) and an H-theorem holds (ref. 3, Appendix F). 

As soon as the kinematic viscosity becomes negative, the basic equi- 
librium solutions described in Section 4.1, which are spatially uniform, lose 
stability. Presumably, new equilibria with nontrivial spatial structure will 
then emerge. This question will not be pursued here. 

6.4. S i m u l t a n e o u s  O p t i m i z a t i o n  of  v and g 

With a Boltzmann-based viscosity which can be tuned arbitrarily close 
to zero, as exhibited in the previous section, one can in principle build 
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Fig. 1. Boltzmann-based kinematic viscosity v as a function of d, in the indistinguishable 
case. The solid lines represent the computations of the present paper (no semi-detailed 
balance) with, from top to bottom, no = 0, 1, 2, 3, 7, 15, 31 rest particles. For comparison, the 
dashed lines represent the viscosity in the case of semi-detailed balance, ~1~ again in the 
indistinguishable case, for 0, 1, 2, and 3 rest particles. 

models with arbitrary large values of the Reynolds coefficient R .  aX. Unfor- 
tunately, the true viscosity, measured in the three-dimensional simulations, 
will turn out to be noticeably larger than the Boltzmann viscosity, and 
definitely to remain positive (see Section 8, which the reader may want to 
read first). We therefore looked for other ways to improve the true R .  ax, 

T a b l e  I I .  M i n i m a l  V a l u e s  o f  v 

no v(0.5) 

0 0.0038 
l 0.0006 
2 -0.0013 
3 -0.0024 
7 -0.0051 

15 -0.0070 
31 -0.0080 
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still using Boltzmann results as a guide, but with proper care. We now use 
an idea of Somers and Rem. (14~ Equation (53) shows that the Reynolds 
coefficient depends not only on the viscosity v, but also on various other 
factors. The factors p +/p and c, depend only on the densities d and dok, 
which are considered as given; therefore these factors can be left out of 
consideration. As already stressed in Section 5.1, without semi-detailed 
balance the Galilean factor g(d) depends on the collision rules and not 
only on the densities d and dok. 

In principle, one should then choose the collision matrix A(s ~ s') so 
as to maximize the ratio g/v. Using (53), (39), and (46), we find that R ,  
can be expressed in terms of ~b and ~ as 

2Dc s ~b- (1 -2d )  ~ 
R * - c 2 ( 1 - d )  ~ + 2  (79) 

This is a nonlinear function of the entries A(s --. s') of the collision matrix, 
and therefore the usual optimization algorithms cannot be applied. 
Anyway, we already know that R.  given by the Boltzmann expression (79) 
can take arbitrarily large values, since the Boltzmann viscosity can be 
tuned arbitrarily close to zero. Influenced by our knowledge that the true 
viscosity (not Boltzmann-based) stays positive (see Section 8.1), we shall 
adopt the following strategy. We want to simultaneously minimize ~ and 
maximize ~b. Therefore we consider a linear combination 

al~-a2fb (80) 

where al and a2 are given nonnegative coefficients, and we determine the 
A ( s ~ s ' )  which minimizes that combination. This is again a linear 
optimization problem, which can be solved exactly with existing algo- 
rithms. We adjust then the value of the ratio a~:a2 so as to obtain the 
highest possible value of R ,  ax. 

We remark that a ratio a~: a2= 1:0 corresponds to optimizing only 
the viscosity, i.e., to the model of the previous section. A high ratio like 
a~: a~.= 1000:1 corresponds to optimizing the viscosity first, and then 
optimizing g. There may indeed be some further room for g optimization if 
multiple choices of the v-optimal collision rules are permitted, a usual 
situation. (1~ Experience shows that this already produces a substantial 
improvement. Indeed, Somers and Rem (~4) were led heuristically to maximize 
a quantity I-which they denote F(s')] which is easily shown to be essentially 
equivalent to our quantity ~b. For an FCHC model without rest particles 
they obtained a Boltzmann-based R max of about 40, to be compared with 
17 for our model FCHC-6. 

At the other extreme, a ratio a l : a 2 = 0 : 1  would correspond to 
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optimizing g only; and a ratio a 1" a2= 1' 1000 would correspond to 
optimizing g first, and then v when there are multiple choices. This case 
was also considered in ref. 14 for the FCHC model without rest particles. 

Our experimentation indicated that the best ratio is in the vicinity of 
al" a2 = 5: 1. Of course, the Boltzmann value of R ,  ~x is of limited use as a 
guide for optimizing the true R ,  and we were also limited by the fact that 
it is not practical to build and implement in full simulations models stemming 
from a large number of choices for the value of al :  a2. The above ratio was 
therefore determined by a somewhat empirical mixture of these two sources 
of information. Thus, further improvements of the resulting model cannot 
be ruled out. 

Another important remark for the optimization, also due to Somers 
and Rem, (14) is that in order to maximize g(d), it is much better to 
abandon self-duality. The reason is that in the case of self-duality, g 
vanishes for d =  1/2 (Section 5.1). As a consequence, g is small in the 
vicinity of d -  1/2, which is the region where maximal values of R ,  usually 
occur. If, on the other hand, self-duality is violated, much larger values of 
g can be obtained./~5/ Note also that the expression (80) is not invariant 
under duality when a2 v a 0: ~ is invariant, but ~b changes sign. Self-duality 
was assumed in all our previous models, but purely for reasons of con- 
venience: only one-half of the collision lookup table has to be computed. 
Fortunately, there is no reason of principle why duality should be 
requested, and therefore we dispense with it in the present model. 

The generalization of the optimization procedure described in Sec- 
tion 6.1 is straightforward. In (32) and (33), we can ignore the terms which 
depend only on the input state, because on summation over s and s' 
they produce a value which is independent of the collision rules. Thus, 
minimizing (80) is equivalent to minimizing 

~ P(s) A(s ~ s')(al Y~  - a2q~q~) u 
s S' 

(81) 

Therefore all we have to do is to replace everywhere the quantity Y~ Y'~ 
by (a 1 Y~-a2q~q~) Y'~. 

Boltzmann values for this case will be given in Section 8, where they 
will be compared to true values. 

7. I M P L E M E N T I N G  T H E  M O D E L S  

In previous sections we have used the Boltzmann approximation and 
optimization techniques as a guide for discovering models with high 
Reynolds coefficients. In order to find the true values of the transport coef- 
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ficients for these models, it is necessary to perform appropriate simulations. 
They will be presented in Section 8. In the present section, we explain how 
to carry out efficient computer implementations of the models using a 
lookup table strategy. As noted in Section 6.2, all our optimal models can 
be implemented deterministically, i.e., by lookup table. 

7.1. Models FCHC-7 and FCHC-8 

A convenient machine for implementing the FCHC models is the 
CRAY-2, which possesses 256 Mwords of 64 bits in its central memory. 
Implementation of model FCHC-3 on a CRAY-2 was briefly presented in 
ref. 7. Being a 24-bit model, it used a collision lookup table of 224 words of 
24 bits. This allows further substantial increases in the size of the collision 
lookup table to accommodate rest particles. Practical considerations 
related to machine availability led us not to exceed about 64 millon entries 
for the collision lookup table. 

In order to construct the collision lookup table, we must specify the 
number no of rest particles and the multiplicities ~Hk introduced in Sec- 
tion 6.1, which are in principle arbitrary integers. The total number of 
entries equals the number of microstates, i.e., 224•176 J///k. In practice 
this means that the multiplicities should be small integers. We selected 
the simplest indistinguishable case with all J ~  equal to one. Indeed, 
experimentation with various multiplicity values in the case of semi- 
detailed balance (1~ showed the indistinguishable case to be only marginally 
inferior to the best combination. Furthermore, the indistinguishable case 
permits the construction of exactly self-dual models (when desired). With 
this choice, the total number of entries of the collision lookup table is then 
224(/70 -F 1 ). 

We thus decided to have a maximum of n o-- 3 rest particles, coded on 
two additional bits. In the present formalism, these bits are to be con- 
sidered as representing an integer between 0 and 3, giving the number of 
rest particles in the state. In an alternative formalism, not implemented 
here, one could consider that these two bits are separate, and describe the 
presence or absence of one rest particle and of a "molecule" of two rest par- 
ticles, respectively, as in the 8-bit, two-dimensional model of d'Humi6res 
and Lallemand. (5) 

We are now in a position to completely specify models FCHC-7 and 
FCHC-8. Both models have a maximum number of no = 3 indistinguishable 
rest particles. For model FCHC-7 the collision lookup table is computed 
according to the prescription of Section 6.1, that is, with optimization per- 
formed only on the viscosity. Self-duality is assumed, but no semi-detailed 
balance. For model FCHC-8 the collision lookup table is computed accor- 
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ding to the prescription of Section 6.4, that is, with optimization performed 
jointly on the viscosity and the Galilean factor. Neither semi-detailed 
balance nor self-duality is assumed. 

We now list some useful relations, valid for both models, obtained by 
specializing previously established relations to the case of three 
indistinguishable rest particles. 

The probability of having k(0 ~< k ~< 3) rest particles at a node is, in the 
basic equilibrium, 

dk(1 - d )  3-k 
dok - -  d 2 + (1 - -  d )  2 

The speed of sound, computed from (40), is 

1 I1 + l + 4 d a ( 1 - d )  2 -]-l/a 
e s = - ~  24-[--~ ~ + ~i- _ - ~ ]  ~] 

The fraction of particles which are moving is 

P+ [ 1+2d2 ] ~ 
P - 1 + 2 4 [ d ~ + ~ - - d ) 2 .  l 

(82) 

(83) 

(84) 

7.2. Construction of the Collision Lookup Tables 

The symmetries of the lattice can be used to reduce the work of com- 
puting optimal collision lookup tables. Details are given in ref. 10. Two 
families which differ only by an isometry (this means that they have the 
same number of particles p and that their momenta can be deduced from 
each other by an isometry) present essentially the same optimization 
problem, which needs to be solved only once. An additional advantage of 
the reduced table is that it fits on a single tape and is easily transported. 
Therefore the first step consists in computing a reduced table, in which only 
families with a normalized momentum (8) appear. If the model is self-dual, it 
is also sufficient to consider only the families for which the number of par- 
ticles p does not exceed one-half of the maximum number no + b. The com- 
putations of reduced tables were made on a SUN 3/60. The formulas of 
Section 6 were used, with a specially devised optimizing algorithm which 
takes advantage of the peculiarities of the problem. (1~ The optimization 
problem is degenerate: more than one output state can usually be assigned 
to a given input state without affecting the viscosity. When multiple choices 
are possible, it is advantagous to make a random choice, which is perfor- 
med while generating the table, so that the randomness becomes frozen. 
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These random choices are found to make the collision matrix "effectively 
isotropic" in the sense that the residual anisotropies of the viscosity tensor 
are less than the level of Monte Carlo noise in the output (see ref. 7). 

On a CRAY-2, which has a large memory and hard-wired indirect 
addressing, it is best to use a full collision lookup table, in which all 
possible input states appear explicitly as entries. The "computation" of a 
collision is then reduced to a simple table lookup. A second preparatory 
step consists therefore in computing an expanded table, using isometries 
and duality (when applicable) to obtain the postcollision (output) state for 
any precollision (input) state. We explain now the details of this process, 
starting with the model FCHC-3 (described without details in ref. 7) and 
then indicate the changes needed for the two new models introduced in the 
present paper (FCHC-7 and FCHC-8). 

7.2.1. Expanded Collision Lookup Table for Model  FCHC-3  

There are no rest particles. The full collision table has thus 2 24 entries, 
each one requiring 24 bits for storage. For efficiency reasons, each entry is 
actually stored in a 64-bit CRAY word. This wastes memory, but saves 
execution time. The model is self-dual, that is, the collision table is 
invariant under particle-hole exchanges. Accordingly, the reduced table 
contains only input states with 0-12 particles. 

To build the expanded table, we perform successively the following 
operations for each input state: 

1. If the number of particles in the input state s is larger than 12, 
define s ,  to be the dual ~ of s (interchange 0's and l's); otherwise, 
take s ,  = s. 

2. Find a lattice-preserving isometry T that transforms 'the state s ,  
into a normalized input state s** (a state with a normalized 
momentum; see ref. 8). 

3. Use the reduced table to obtain the normalized output state s** 
corresponding to s**. 

t t 4. Apply the inverse isometry T -1 to s** to obtain the state s , .  

5. If duality was not used in the first step, the output state is s' =s, , '  " 
otherwise, it is the dual s' =s,.-' 

Note that the isometry transforming s ,  into a normalized state s** is 
usually not unique. We shall come back to this in Section 7.2.2. 
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7.2.2. Expanded Collision Lookup Tables for Models FCHC-7 
and FCHC-8 

Models FCHC-7 and FCHC-8 have up to three indistinguishable rest 
particles per lattice node. The state of one node requires thus 26 bits for 
storage (24 for moving particles plus two extra bits to encode the rest par- 
ticles). The full collision lookup table has 226 entries, each one stored on 
26 bits. At execution time, one entry is stored in one 64-bit CRAY word 
for efficiency reasons. On the mass storage device, however, two entries are 
stored in one word to reduce the transfer time between the mass storage 
and the mainframe at the beginning of each run. 

The procedure for the construction of the expanded collision lookup 
tables from their reduced versions is similar to that used for model 
FCHC-3, with the following changes. 

For  model FCHC-8, duality is not used because the model is not self- 
dual. For  both models, a further randomization, which takes advantage of 
the nonuniqueness of the isometry transforming s ,  into a normalized state 
s**, has been found necessary to eliminate residual anisotropies of the 
collision lookup tables. 5 Specifically, after the step leading to s**, a lattice- 
preserving isometry R, randomly chosen among those which also preserve 
the momentum of s**, is applied to the normalized state s**, producing 
another normalized state s***. The reduced table gives the corresponding 

t output state s*** (just as for model FCHC-3); this leads to s** after 
application of R 1. The end of the procedure is the same as for FCHC-3. 

7.3. The Three-Dimensional Implementations of FCHC Models 

As they are defined, the FCHC models are four-dimensional. They 
may nevertheless be used in a pseudo-4D version for three-dimensional 
simulations. This was suggested in ref. 6 and verified in the first implemen- 
tation. (9) A somewhat loose description of the pseudo-4D model in pre- 
vious publications leads us to give now a more formal definition. Consider 
a four-dimensional FCHC lattice of infinite extent in all dimensions. It is 
the set of quadruplets of signed integers (xl ,  x2, x3, x4) such that the sum 
xl + x2 + x3 + x4 is even. The geometrical lattice is periodic of period two 
in, say, the x4 direction. If the lattice gas initial condition at the 
microscopic level (i.e., the Boolean field) has periodicity two in x4 and the 
collision rules are identical at any two nodes differing only by their x4 
coordinates (e.g., fully deterministic rules, or rules changing randomly only 
with the first three coordinates), it then follows that the periodicity two is 
preserved at later times. For such solutions, it is sufficient to store the 

s This appears superfluous for model FCHC-3. 



Low-Viscosity Lattice Gases 1215 

states pertaining to two classes of nodes: those having x 4 = 0 and those 
having x4 = 1. In four-dimensional space, these nodes form a staggered set, 
but they can be uniquely represented by their projections onto R 3, i.e., by 
the triplets (Xl, x2, x3) of signed integers with no restriction on their sum. 

In actual implementations of this pseudo-4D model, additional 
obvious modifications are introduced, such as finiteness of the three-dimen- 
sional lattice and boundary conditions. For  further details on actual 
machine implementations, see refs. 7-11. 

8. RESULTS OF S IMULATIONS COMPARED TO BOLTZMANN 
PREDICTIONS 

8.1. Kinematic Viscosity, Galiiean Factor, Speed of Sound, and 
Reynolds Coefficient: Measurements 

We measure the kinematic shear viscosity v and the Galilean factor 
g(d) by the following method. A 256 x 64 x 64 lattice is initialized with a 
uniform density d and a velocity u = (ux, uy, 0). The component ux is 
uniform and positive. The component uy is an x-dependent shear wave with 
wavenumber k and amplitude small compared to u~. Linear theory 
indicates that the shear wave decays as e -vk2t and propagates in the x 
direction with a velocity g(d)ux. We then let the lattice gas evolve and 
measure uy at regularly spaced times by performing space averages over 
cells containing 1 x 64 x 64 lattice nodes. A spatial Fourier transformation 
of uy with respect to the x variable is performed at each output time. The 
time dependence of the complex amplitude of the Fourier mode with 
wavenumber k is extracted. Its argument and the logarithm of its modulus 
are then fitted to the linear time-evolution law predicted by theory, using 
a least squares method. From the slopes of these linear regressions we 
obtain respectively the Galilean factor g(d) and the kinematic shear 
viscosity v. 

We measure the speed of sound by the following method. A 
256 x 64 x 64 lattice is initialized with a suitable longitudinal (sound) wave 
of wavenumber k in the x direction. As before, we obtain the evolution of 
the Fourier modes of wavenumber k for the density fluctuations and the 
velocity ux. From the ratio of the real parts of the complex amplitudes, we 
easily extract the speed of sound. 6 

We repeat each measure ten times with different random generator 
seeds, to evaluate the intrinsic noise level of the method. This leads to the 
error bars on subsequent figures. 

6 Viscous effects cannot be ignored if good accuracy is desired. 
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We now give the results for models FCHC-3 (Fig. 2), FCHC-7 
(Fig. 3), and FCHC-8 (Fig. 4). In each figure, parts (a)-(d) correspond, 
respectively, to the Galilean factor g(d), the speed of sound c~(d), the 
kinematic shear viscosity v, and the Reynolds coefficient R.(d), which are 
plotted against the density d in a relevant interval. The solid curve is the 
theoretical value, based on the Boltzmann approximation; simulation 
results are shown with error bars. 

We make some comments. For model FCHC-3, which satisfies semi- 
detailed balance, Boltzmann predictions for the Galilean factor and the 
speed of sound should be exact; they essentially provide a check on the 
numerical method. This remark does not apply to the kinematic viscosity, 
which is seen to be slightly higher than the Boltzmann value. As a conse- 
quence, the maximum value of the Reynolds coefficient R ,  ax is about 6.4, 
somewhat lower than the Boltzmann prediction of 7.13. 

For model FCHC-7, which violates semi-detailed balance, we observe 
discrepancies for the Galilean factor and the speed of sound, but not very 
large ones. The discrepancies are seen to be much more significant for the 
kinematic viscosity: the Boltzmann values change sign above dc-~0.42, 
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while the simulated values drop to a very low value of approximately 
5 x 10 -3, but stay positive. As a consequence, the Boltzmann predictions 
for R .  are now completely off the mark. The largest achievable value is 
R , a X -  ~ 7.9. Thus, only a marginal improvement has been achieved with 
respect to model FCHC-3. 

For model FCHC-8, the Galilean factor is seen to be significantly 
lower than the Boltzmann values and the viscosity significantly higher. 
Both of these effects tend to reduce the Reynolds coefficient. Nevertheless, 
R .  ax is now about of 13.5, a noticeable improvement over previous 
implemented models. Further discussion of the results is found in Sec- 
tions 9.1 and 9.2. 

8.2. Measurements  of Correlat ions for Basic Equilibria 

We now report some properties of basic equilibria. For all cases dis- 
cussed in Section 8, that is, for models FCHC-3, FCHC-7, and FCHC-8, 
we have checked that the basic equilibria are indeed obtained. More 
precisely, we observed that starting from a nonequilibrium state statisti- 
cally uniform and uncorrelated, corresponding to a zero global velocity 
and a given global density, the average populations of the different 
velocities relax to steady values in a few time steps (less than 20). 

We have measured the correlations for basic equilibria. We know that, 
with semi-detailed balance, equilibria are exactly factorized. Thus, there are 
no (single-time) correlations between particles pertaining to different nodes 
and/or velocities. Correlation coefficients between the Boolean variables ni 
and nj, corresponding to two velocities at the same node, may provide use- 
ful information about deviations from the Boltzmann approximation. The 
relevant correlations should then be measured just before collisions, since 
this is the quantity neglected by the Boltzmann approximation. We shall 
limit ourselves to basic (zero-velocity) equilibria. 

Correlations are measured for various models and densities from 
simulations on a lattice 128 x 128 by letting the system relax to global 
equilibrium. Specifically, we define the correlation coefficient as ~g~= 
Cov(ni, nj)l[a(ni)a(nj) ] 1/2, where a denotes a variance and Cov a 
covariance. 

For the model FCHC-3, where no correlations are predicted, the 
measured correlation coefficient is indeed essentially noise, at a level of less 
than 7 x 10 -3 for any pair of velocities and for the explored densities rang- 
ing from 0.32 to 0.50. 

For the model FCHC-7, semi-detailed balance does not hold and sub- 
stantial correlations are observed. For d=0.5  the absolute value of the 
correlation coefficient is between 0.05 and 0.22, depending on the pair of 
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velocities considered. At lower densities, correlations drop, as expected: the 
maximum correlation for d =  0.32 is 0.11. Furthermore, correlations display 
some anisotropy. If strict G-invariance were to hold, the correlation coef- 
ficient cg 0 should depend only on the angle 0 U between the two velocities ci 
and cj. Actually, we find that for 0 = ~/2, the correlation coefficient depends 
on the fourth component of the velocities. For d =  0.5 three different sets of 
values are obtained near -0.11, -0.08, and -0.22. This seems due to 
peculiarities of the pseudo-4D implementation (see Section 9.2). No signifi- 
cant anisotropies are found for the values 0, ~/3, 27z/3, and rc of the 
angle 0. 

Similar results hold for model FCHC-8. The maximum correlation is 
about -0 .23 for d =  0.50. 

We observe that the correlation coefficients between rest particles and 
moving particles, and between two rest particles are both at the noise level. 

9. CONCLUSIONS AND DISCUSSIONS 

9.1. Summary of Results 

We have studied a class of extended FCHC lattice gas models com- 
prising an arbitrary number of rest particles and the most general local 
collision rules consistent with the basic conservation laws of mass and 
momentum. 

The study comprises two main parts. The first part (Sections 2-6) is 
mostly theoretical. We used the Boltzmann approximation to obtain the 
Galilean factor, the speed of sound, the kinematic viscosity, and the 
Reynolds coefficient. We then performed computer-assisted (but exact) 
optimizations to find those collision rules possessing the lowest viscosity. 
The second part (Sections 7 and 8) is about implementation of some of the 
optimal models suggested by the Boltzmann approximation. We showed in 
detail how to construct collision lookup tables for efficient implementation 
on machines with a very large memory. We then performed simulations to 
extract the "true" values of the transport coefficients. 

Let us now consider the results. The optimal Boltzmann viscosity has 
been found to become negative in a range of values of the density near 
d =  1/2 as soon as there is more than one rest particle (see Fig. l). This 
result may seem academic in view of the simulations reported in Sec- 
tion 8.1, which indicate that the lowest value found for the true viscosity 
(obtained for model FCHC-7) is positive and around 5x 10 -3. The 
Boltzmann result is nevertheless significant in its own right. Indeed, in 
principle, lattice gas models can be constructed which obey exactly the 
Boltzmann approximation. They are obtained by taking the large-N limit of 

822/59/5-6-9 
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a stack of N FCHC models with suitable random couplings. (An example 
for N = 2 is given in the next section.) 

In a context where all microscopic constants (density, particle speed, 
lattice constant) are order one, it may be surprising to find that the 
kinematic viscosity can be very small compared to one. Indeed, in a free 
gas, i.e., not constrained by a lattice, this would be unlikely. Here, however, 
this constraint introduces an element of order in the lattice gas which 
invalidates the usual picture for (classical) gases. Technically, lattice gases 
are known to possess a "collision viscosity" (collision dependent), which is 
order one when the density is order one, and a "propagation viscosity," 
also order one, but negative, and which stems only from particle propaga- 
tion. (3'13) In our optimal models the two viscosities almost (or exactly) 
cancel each other by suitable fine tuning of the collision rules. 

When the viscosity goes through zero, a phase transition is likely to 
take place, leading to the appearance of some large-scale organization, as 
observed, for example, in ref. 16. Even before the viscosity goes negative, 
when it becomes too small, new terms, not present in the Navier-Stokes 
equations, become relevant; for example, linear terms involving four space 
derivatives. 7 It is conceivable that the modified Navier-Stokes equations 
remain valid beyond the phase transition. Such questions will not be dis- 
cussed further, since they are too speculative as long as we do not possess 
a three-dimensional implementable model with negative viscosity. 

Next, we examine the results obtained by measuring the true transport 
coefficient of various FCHC models. Table III, an extended version of 
Table I, summarizes all the salient qualitative and quantitative features of 
the FCHC models so far studied by our group. A figure is given in the 
column " R ~  ax measured" only when the corresponding model has been 
implemented (the reference then appears in boldface), d.  is the value of the 
(reduced) density at which the highest Boltzmann-based value of R ,  ax is 
obtained. Parenthetical values are somewhat improper, since the viscosity 
can go through zero. 

An interesting measure of the actual progress made in three-dimen- 
sional machine implementations is obtained by computing an effective 
speed 

= s ( R ,  ) (85) S ~  max 4 

where S is the speed measured in node updates per second (in two-dimen- 
sional simulations, the fourth power should be replaced by a third power). 
The CPU time needed to simulate a three-dimensional flow of given 

7 Three space derivatives are ruled out if the collision matrix is parity invariant, that is, 
invariant under simultaneous reversal of all input and output  velocities. 
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geometry at a given Reynolds number for a given number of large eddy- 
turnover times is inversely proportional to S , .  (We assume that no other 
physical effects are added, such as surface tension, combustion, or 
porosity.) For FCHC models 1, 3, 7, and 8, the values of S ,  are, respec- 
tively, 8 x 10 6, 5 X 101~ 11.7 x 101~ and 10 t2. We did not include these data 
in our table because they are somewhat misleading if not put in proper 
context: for example, our earliest model was only meant to validate the 
FCHC approach and had a rather low speed of 5 x 10 5 node updates per 
second (compared to about 3 x 10 7 for the later ones). Still, the effective 
speed factor should be useful in comparing two designs, say A and B, for 
special-purpose machines. If design B allows ten times more parallelism, 
and thereby a tenfold increase in the speed S, but at the cost of a drop of 
a factor two in the Reynolds coefficient, then design A is preferable for the 
simulation of three-dimensional incompressible flows. 

9.2. Possible Improvements  

The hunt for larger values of the Reynolds coefficient is still on. As we 
have seen, the existence of correlations between the input velocities, and 
the resultant invalidation of the Boltzmann approximation, appears to be 
responsible for the relatively limited improvements obtained with the pre- 
sent models. An immediate objective is therefore to try to understand how 
these correlations are created, and then, if possible, to invent appropriate 
remedies in order to decrease the size of the correlations or even to reverse 
their sign. 

One possible explanation for the rather large observed correlations is 
as follows. In a fully four-dimensional FCHC simulation, correlations 
created by the collisions at time t can contaminate the input to another 
collision only after two time-steps. As a result, the effect should be rather 
diluted. However, all our simulations use the pseudo-4D model in which 
nodes of the four-dimensional lattice are identified when their x4 coor- 
dinates differ by a multiple of two (Section 7.3). Consider two particles 
coming out of the same node with velocities which differ only by the sign 
of the fourth coordinate, for instance c i=  (1, 0, 0, 1) and e j=  (1, 0, 0, -1 ) .  
Because of the peculiar geometry of the simulation, these two particles will 
in effect get to the same node in just one time-step. Correlations between 
such particles at time t, generated by violation of semi-detailed balance, 
will be present at time t +  1 in the input states and thus modify the 
viscosity. A simple heuristic reasoning indicates that this effect should 
add a positive contribution to the viscosity compared to the Boltzmann- 
based prediction and should also explain the strong negative correlations 
reported in Section 8.2. 
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A possible remedy is to use a lattice which is somewhat thicker in the 
fourth dimension. Reduction of correlations can also be achieved by ran- 
dom coupling of two FCHC models, say FCHCu and FCHCd (u and d for 
"up" and "down"). Let their respective Boolean fields be nlu(t, x) and 
nla(t, x). Just before collision, random permutations of bits are made: at 
each node and for each velocity/, the bits n~, and n~a are interchanged with 
probability 1/2. In practice, pseudorandom choices can be used. 

We are exploring the above ideas for further improvements of the 
Reynolds coefficient. 

9.3. Too  M u c h  vs. Too Li t t le  Reso lu t ion  

In a fluid made of real molecules, there is usually a wide separation of 
scales between the mean free path and the smallest hydrodynamic scale. 
For example, atmospheric turbulence in the planetary boundary layer has 
a separation of scales of at least four orders of magnitude. The separation 
of scales is an increasing function of the Reynolds number when the Mach 
number is held fixed. (19) 

Similarly, it was argued by Orszag and Yakhot (15) that, when the 
Reynolds number is increased in a lattice gas simulation, increasing waste 
of resolution results, i.e., an increasing fraction of the stored data contains 
useless microscopic information. They assumed that the kinematic viscosity 
of the lattice gas would be of order unity in lattice units. In view of the 
results presented in the present paper (and also of further expected progress 
in construction of low-viscosity models), it becomes necessary to reexamine 
the waste-of-resolution argument. We shall here limit ourselves to flow 
governed by the incompressible Navier-Stokes equations. For the case of 
Rayleigh-B6nard convection, see ref. 20. 

We denote by la, the dissipation scale, the smallest excited scale in the 
flow. We denote by lo the integral scale and by M the Mach number of the 
flow. Everything is in lattice units. The Reynolds number R is given by 
(51). The best available information (no full theory) on turbulent flows 
indicates that for large R 

ld 
- - ~ - -  CR m (86) 
l0 

where C is a numerical constant and m an exponent which depends on the 
type of flow. For two-dimensional isotropic turbulence, m = 1/2. For three- 
dimensional isotrpic turbulence, m = 3/4. For three-dimensional turbulence 
near a wall m is somewhere between 3/4 and 1. From (51) and (86), it 
follows that 

la~ C ( M R . ) - I  R ~ m (87) 
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where R .  is the Reynolds coefficient. For fixed Mach number and 
Reynolds coefficient and any exponent m < 1, the dissipation scale tends to 
infinity with the Reynolds number. Since the dissipation scale is measured 
in lattice units, this indicates increasing w a s t e  of resolution at high 
Reynolds number. 

Now, let us hold the Mach number and the Reynolds number fixed, 
and consider a sequence of models with increasing Reynolds coefficients 
used to simulate the flow. Both the integral scale and the dissipation scale 
will decrease (as R , t ) .  The consequences are twofold. 

First, consider the computational work needed to simulate the flow for 
a given number of large eddy turnover times. It scales like R ,  3 in two 
dimensions and R ,  4 in three dimensions. Thus, as already stressed, increas- 
ing R .  is computationally very advantageous. To take an extreme example, 
compare the same two-dimensional flow computed first with the original 
FHP-I rule (31 and then with the optimized FCHC-8 model (projected down 
to two dimensions). The efficiency gain (measured by the ratio of the 
necessary node updates) is (13.5/0.387)3---42,000. A comparison of the 
computational work required for floating-point methods and lattice gas 
methods has been made by Zaleski. (2~ 

A second consequence of increasing R .  is that the dissipation scale 
may become smaller than the size of the averaging cells needed to extract 
hydrodynamic signals from microscopic noise (say, 4-8 lattice con- 
stants(n)). We then lose the hydrodynamic information about the smallest 
scales, but the simulation is still faithfully solving the Navier-Stokes equa- 
tions, as long as the dissipation scale is larger than a few lattice constants. 
If we then further increase R. ,  so that the dissipation scale computed from 
(87) would become less than one lattice constant, the continuum 
Navier-Stokes approximation will break down at small scales. The equiv- 
alent action in a traditional floating-point calculation, i.e., the excessive 
lowering of the viscosity, leads to disaster: either the solution will blow up 
or it will go to hydrodynamically unphysical states, such as equipartition 
of energy among all spatial Fourier modes. In lattice gases, such disaster 
seems ruled out, because the model stays exactly realizable as a system of 
interacting Boolean particles. 8 Large-scale behavior will still be governed 
by the Navier-Stokes equations. But it may not be faithfully represented 
(for the given Reynolds number), since the largest and the smallest scales 
are interdependent (in a way mostly unknown). In the language of com- 
putational fluid dynamics, modifications of the Navier-Stokes equations at 
small scales, with the purpose to simulate flows at Reynolds numbers too 

8The same holds for methods using the lattice Boltzmann equation, 121,=) provided no 
simplifying expansion is used which could violate realizability. 
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large for the mesh, are k n o w n  as sub-grid-scale models. W i t h o u t  theore t ica l  

unde r s t and ing  of small-scale  mot ion ,  this remains  an empir ica l  field, where 
the meri ts  of  a given p rocedure  can be es t imated  only by compar i sons  with 
exper iments  (or  fully resolved s imulat ions ,  when avai lable) .  

In  refs. 7 and  11 a lat t ice gas s imula t ion  of  th ree-d imens iona l  flow 
a r o u n d  a c i rcular  plate  has been repor ted .  I t  uses model  F C H C - 3  with 
R .  ax = 6.4 and a Reynolds  number  of a b o u t  200. I t  appears  that  the very 
smallest  s t ructures  in the b o u n d a r y  layer  near  the plate  are only marg ina l ly  
reso lvedJ  23) We are thus at  the border l ine  of  having too little resolution. An 
assessment  of lat t ice gas s imula t ions  as sub-gr id-scale  models  m a y  become 
necessary. 
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